郭恒杰1 ,贾琳渊 1 ,郭帅帆 2 ,韩佳2.氢预冷涡轮发动机研究进展及关键技术[J].航空发动机,2024,50(1):10-19
氢预冷涡轮发动机研究进展及关键技术
Development and Key Technologies of Hydrogen-Fueled Precooled Gas Turbines
  
DOI:
中文关键词:  高超声速  涡轮发动机  进气预冷  燃料换热预冷  氢燃料
英文关键词:hypersonic  gas turbine  inlet air precooling  heat-exchange precooling  hydrogen fuel
基金项目:
作者单位
郭恒杰1 ,贾琳渊 1 ,郭帅帆 2 ,韩佳2 1.西北工业大学 动力与能源学院西安 710129 2.中国航发沈阳发动机研究所沈阳 110015 
摘要点击次数: 2548
全文下载次数: 451
中文摘要:
      高速涡轮发动机及其组合动力装置是高超声速飞行器技术的基础和关键。随着飞行马赫数提高,来流空气总温显著升 高,发动机推力急剧减小。在此背景下,进气预冷成为扩展航空涡轮发动机工作速域的主要方向。液氢同时具备高热值和高热 沉,是燃料换热预冷的理想工质。因此,氢预冷涡轮发动机被视为实现临近空间高超声速飞行的重要技术之一。回顾了国外氢预 冷吸气式发动机的发展历程,分析了各型发动机的主要特点,并根据预冷目的归纳总结了面向氢氧火箭以及面向冲压或涡喷发动 机的2类氢预冷技术。在此基础上,考虑氢预冷涡轮发动机的工作需求,对其研发中的关键技术进行了梳理。与传统航空发动机 相比,氢预冷涡轮发动机由于采用了新的循环、燃料和结构,给总体、传热、燃烧、材料等方面带来了诸多挑战。其中的关键技术包 括:预冷系统与发动机总体性能的全工况稳态和动态匹配技术;高功重比预冷器的设计、成型和防冰技术;氢燃料动态高精度计量 和燃烧控制技术;涉高压氢部件的氢损伤抑制及预测技术等。
英文摘要:
      High-speed turbine-based combined cycle propulsion system is the foundation and key of hypersonic vehicle technolo? gies. With the increase of Mach number, the total temperature of the incoming air rises significantly, and the engine thrust decreases sharply. Inlet air precooling has become the major direction to expand the speed range of aircraft gas turbines. Liquid hydrogen has both a high calorific value and a high heat sink, which makes it an ideal medium as a fuel and cold source. Hence, the hydrogen-fueled precooled gas turbine is regarded as a promising technology to realize hypersonic flight in near space. Firstly, the historical development of hydrogen-fueled precooled airbreathing engines is reviewed, the main features of each type of engine are analyzed, and two types of technologies of hydrogen precooling technologies for hydrogen-oxygen rockets and for ramjet or turbojet engines are summarized according to the purpose of precooling. Based on this, the key technologies in developing hydrogen-fueled precooled gas turbines are sorted out considering their operation requirements. Compared with conventional jet engines, hydrogen-fueled precooled gas turbines bring in new challenges in the areas of system design, heat transfer, combustion, and materials due to the adoption of new cycles, fuel, and structures. The key technologies include but are not limited to steady-state and dynamic matching between the precooling system and engine performance; design, molding, and anti-icing technologies for high power-to-weight ratio precooler; high-precision dynamic metering of hydrogen fuel; hydrogen combustion technology; and hydrogen-related damage inhibition and prediction technologies for high-pressure components.
查看全文  查看/发表评论  下载PDF阅读器